Potential Effects of Structural Controls and Street Sweeping on Stormwater Loads to the Lower Charles River, Massachusetts

In cooperation with the:

U.S. Environmental Protection Agency
Massachusetts Department of Environmental Protection, and the
Massachusetts Water Resources Authority

science for a changing world

Photo courtesy of: Philip Greenspun http://philip.greenspun.com

Study area

Objective

Assess the potential non-CSO stormwater load reductions that can be achieved by implementing Best Management Practices (BMPs):

Structural controls

Street sweeping

Structural Controls

- Retrofit study by Center for Watershed Protection (CWP)
- Identified structural controls in a crosssection of subbasin types – focused Village Brook Subbasin
- CWP study did not evaluate potential load reductions

Structural Control Village Brook Subbasin

CWP No.	Category	Contributin g drainage	Runoff treate d	Site Location	CWP No.	Category	Contributi ng drainage	Runoff treate d	Site Location
VB- 1	Biofiltration - Bioretention	area (mi²) 0.0023	(ipche s)	Boston College Alumni Field Parking	VB- 11	Infiltration- Filtration	0(002)6	(iရှင္မရe s)	Lincoln Primary School
VB- 2	Biofiltration	0.0438	1.0	Cleveland Circle	VB- 12	Infiltration- Filtration	0.0781	0.5	Cypress Playground
VB- 3	Bioretention Infiltration- Filtration	0.0047	0.5	Chestnut Hill nr. Cleveland Circle	VB- 13	Infiltration- Filtration	0.1563	0.33	Robinson Playground
VB- 4	Infiltration- Filtration	0.0938	0.5	Waldstein Playground	VB- 14	Biofiltration -	0.0005	1.0	Brookline Public Housing nr. Chestnut St. and
VB- 5	Detention- Retention	0.1016	0.5	Reservoir Rd. and Crafts Rd.	VB- 15	Bioretentio គ្រាfiltration- Filtration	0.2266	0.25	Pond Ave Adjacent to Willow Pond
VB- 6	Infiltration- Filtration, Biofiltration	0.0047	0.5	Boylston St. nr. Reservoir Rd.	VB- 16	Detention- Retention			Willow Pond
VB- 7	Biometention -	0.0031	1.0	Fairway Rd. nr. Reservoir Rd.	VB- 17	Detention- Retention			Leverett Pond
VB- 8	Biorretention -	0.0063	1.0	Runkle Elementary School	VB- 18	Biofiltration	0.0047	1.0	Park nr. North End of Leverett Pond
VB- 9	Bioretention Biofiltration -	0.0047	0.5	Newbury College	VB- 19	Bioretentio Petention- Retention			Village Brook Outfall to Leverett Pond
VB- 10	Bioretention - Bioretention	0.0023	0.75	Newbury College					- T ONG

Bioretention

Structural Control Types

Category	Types of controls	Major physical or chemical process	Characteristics
Infiltration- Filtration	Infiltration trenches, infiltration basins, underground filters, surface filters, organic media filters, porous pavement	Infiltration, adsorption, straining, chemical transformation, microbial decomposition	Adequate soil media critical; effective suspended solids removal; regular maintenance
Biofiltration-	Bioretention, dry and wet swales, vegetated filter strips	Biodegradation, precipitation, infiltration, filtration,	Assentialetemprevent reggingitical; low cost; easy to install
Bioretention	Detention ponds, wetlands/shallow marsh systems, detention tanks and vaults, oil-grit separators, catch basin inserts,	Paraculate settling and biological filtering (wetlands)	Adequate hydrology and soils required for retention/wetlands; mainly pretreatment
	manufactured systems		

Structural Control Removal Efficiencies

- National Pollution Removal Performance Database for Stormwater Best Management Practices (Brown and Schueler, 1997)
- Stormwater Best Management Practices in Ultra-Urban Settings: Selection and Monitoring (Shoemaker and others, 2000)
- National Stormwater Best Management Practices Database (ASCE, 2002)

Structural Control Removal Efficiency

Structural Control Removal Efficiency

Percent Decrease in Constituent Loads – Village Brook

Removal	Suspended Solids	Fecal Coliform	Total Phosphorus	Total Lead				
Stormwater load								
Average	15	6.4	11	13				
Lower quartile	15	7.8	7.5	9.3				
Median	17	13	12	15				
Upper quartile	19	16	17	18				
Total load								
Average	15	6.2	9.2	12				
Lower quartile	14	7.5	6.2	8.9				
Median	17	13	10	15				
Upper quartile	18	16	14	17				

Street Sweeping

- Potentially important BMP because of limited opportunities for structural controls
- Streets are a large source of contaminates, generally 70-80 total load
- Improvements in sweeper technology

Approach

- Add water quality to the SWMM simulation of the single-family residential land-use subbasin,
- Simulate effects of different sweeping efficiencies and frequencies,
- Apply removal efficiencies to other subbasins.

Storm Calibration

Sweeper Types and Efficiencies

Type	Suspended solids	Fecal coliform	Total phosphorus	Total lead
Mechanical	25	5	5	10
Wet vacuum and regenerative air	45	20	20	30
Dry vacuum	80	50	50	70
Best available technology	95	90	90	95

Availability factor of 0.80 was applied to all sweepers

Sweeper Frequency

- Inter-event dry period averaged 85 hours (1970-95),
- 6 frequencies (CLFREQ) simulated—monthly, bimonthly, weekly, bi-weekly, every other day, daily,
- CLFREQ only counts periods of no runoff (<0.0005 inches), therefore the actual frequency could be greater than the frequency specified.

Simulated Load Removed by Sweeping

Sensitivity of Model Buildup and Washoff Variables

Load Removed by Sweeping

PERCENT CHANGE IN VARIABLE

$$Q = \frac{QFACT(1) \times t}{QFACT(3) + t}$$

Q - built-up load, QFACT(1) - buildup limit, QFACT(3) - time for the buildup load to reach half the buildup limit

$$POFF = RCOEF \times r^{WASHPO} \times PSHED$$

POFF - load washed off at time each time step (mass/time)

RCOEF - washoff coefficient,

R - runoff rate (in./hr),

WASHPO - exponent of the runoff rate

PSHED – quantity of the constituent load available for washoff at each time step

Alternative model

- Increased WASHPO by 60% (1.85 to 3.0) Decreased RCOEF by 80% (10.7 to 2.0),
- Alternative variable values improved storm-fit for 3 July but adversely effected fit for other storms,
- Caused suspended solids load removed by sweeping to increase about 4.5 times (from 15% to 66%) for simulations with a 2-day frequency and 76% effective efficiency,
- Generally improved removal by sweeping by 3 fold for suspended solids, 20% for fecal coliform, 40% for total Phosphorus, and 2 fold for total lead.

Alternative model suspended sediment calibration

Extrapolation of Model Results

- Road density weighting factor
 Ratio of street density in the single-family land use subbasin to other basins
- Street load to subbasin load method

Estimates subbasin street load (simulated from the load per mile of street in the single –family subbasin) relative to the subbasin load

Suspended solids – 3.61 kg/d/mi

Fecal coliform – 13.95 CFU/d/mi

Total phosphorus – 14 g/d/mi

Total lead – 2.05 g/d/mi

 Road density weighting factor generally resulted in more removal than the loads method

Combined Structural Control and Sweeper Percent Load Removed

	Lower	Average	Upper			
Percentage of non-CSO load below Watertown Dam						
Suspended solids	14	24	44			
Fecal coliform	7.5	13	17			
Total phosphorus	4.9	8.7	14			
Total lead	11	21	34			
Percentage of non-CSO load from the entire watershed						
Suspended solids	3.7	6.1	11			
Fecal coliform	4.4	7.9	10			
Total phosphorus	1.0	1.8	2.8			
Total lead	4.1	8.1	13			

Lower – Low efficiency sweeper, 30 day, lower quartile Average – High efficiency sweeper, bi monthly, median quartile Upper – Best available technology sweeper, weekly, upper quartile

Suspended Sediment – 2000 WY

Fecal Coliform – 2000 WY

Total Phosphorus- 2000 WY

Total Lead- 2000 WY

Storm Characteristics- Long-term, 2000WY & Design Year

Suspended Sediment – Design Storm Loads

Total Lead - Design Storm Loads

Fecal Coliform – Design Storm Loads

Total Phosphorus – Design Storm Loads

Conclusions

- Structural control have a wide range of removal efficiencies,
- Removal efficiency is generally best for infiltration type controls and worst for biofiltration-bioretention type controls,
- Removal efficiency is generally best for sediment and lead and least for bacteria and phosphorus,
- Street sweeping technology has improved markedly over the past 20-30 years,
- Little independent data exist on performance of new sweepers and no data exist on effects of sweeping on bacteria.

Conclusions (cont)

- Model variable values are non-unique and could effect the simulated removal by sweeping,
- Upper estimate, 35-45% decrease in lead and sediment and a 20% decrease in phosphorus and fecal bacteria (sweeping once weekly with the best available technology and upper quartile intensive of structural control retrofitting)
- Lower estimates, 4% decrease in sediment, lead and fecal and a 1.4% decrease in phosphorus (sweeping once monthly with low efficiency sweeper and lower quartile of structural control removal, includes loads above Watertown Dam)
- Load reductions are highly variable and only measurements of BMP effects can provide clear evidence of the benefits they may have on improving water quality.

Simulated Buildup Error

